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SUMMARY

An accurate finite element scheme for computing 3D-axisymmetric incompressible free surface and
interface flows is proposed. It is based on the arbitrary Lagrangian Eulerian (ALE) approach using free
surface/interface-resolved moving meshes. Key features like the surface force, consisting of surface tension
and the local curvature, and jumps in the density and viscosity over different fluid phases are precisely
incorporated in the finite element formulation. The local curvature is approximated by using the Laplace–
Beltrami operator technique combined with a boundary approximation by isoparametric finite elements.
A new approach is used to derive the 3D-axisymmetric form from the variational form in 3D-Cartesian
coordinates. Several test examples show the high accuracy and the robustness of the proposed scheme.
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1. INTRODUCTION

Free surface and interface flows are often encountered in day-to-day life, nature and industrial
applications. Computations of these flows have drawn attention of many scientists not only of
industrial applications but also of physical interest. Apart from difficulties associated with the
numerical computation of fluid flows, the moving free surface/interfaces cause additional problems.
In particular, the development of accurate and stable numerical schemes for free surface and
interface flows is still a challenging task. An important issue is the precise inclusion of the
surface force, which compresses the surface/interface tension and the local curvature on the free
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120 S. GANESAN AND L. TOBISKA

surface/interface. Apart from these difficulties, additional care is needed to handle the jumps in the
material properties (density and viscosity) across the interface and to suppress exhibiting spurious
velocities (or parasitic currents).

In computations of these flows, either Eulerian or Lagrangian approaches is used. Popular
methods in Eulerian approach are the volume-of-fluid (VOF), level-set (LS) and front-tracking
(FT) methods. In all these methods, a fixed (or) Eulerian grid is used to solve the Navier–Stokes
equations for the fluid flow whereas the free surface/interface capturing/tracking technique differs
in each method. In the VOF method [1–4] a colour function, which represents the fractional
amount of fluid present in a cell, is used to capture the interface between two phases. The
capturing of interface with the LS method [5–8] is simple and relatively easy to implement. In
this method a zero LS function is used to capture the interface. The FT method [9, 10] uses a
separate one dimension lower moving mesh to track the interface. Each of these methods has its
own advantages and disadvantages [11, Chapter 4]. In the Eulerian approach, the inclusion of the
surface force and the jumps in the material properties requires additional techniques, such as the
continuum surface force (CSF) [12] model and the cutting Heaviside functions. The numerical
error caused by these approximation techniques influences the reliability of the computed solution
of the problem [13]. Recently, it has been shown in [14] that spurious velocities of a consider-
able size can occur in case of free surface/interface flows computed on interface non-resolved
meshes.

We will use an alternative way, the arbitrary Lagrangian Eulerian (ALE) approach, which avoids
the fast mesh distortion known from the pure Lagrangian method. The ALE approach is quite
popular in fluid structure interaction problems. For applications to free surface flows in the finite
element context, we refer to [15–18]. Since the free surface/interface is resolved by the mesh,
the surface force and the different material properties in different phases can be incorporated very
accurately in our scheme. We use the Laplace–Beltrami operator technique for approximating the
local curvature which avoids the explicit computation of the curvature. Further, a new technique
is used to derive the variational form of the 3D-axisymmetric problem. The main idea is to start
with the variational form in 3D Cartesian coordinates and to transform the volume as well as the
surface integrals into area and line integrals, respectively, by introducing cylindrical coordinates
and imposing axisymmetric conditions. In such an approach, the ‘artificial’ boundary conditions
at the symmetry axis appear in a natural way.

The structure of the paper is as follows. First, the governing equations of a typical two-phase
flow are given in Section 2. Starting with the variational form in 3D-Cartesian coordinates we
derive the 3D-axisymmetric form and discuss the type of boundary conditions appearing at the
symmetry axis in a canonical way. In Section 3, all details of the proposed numerical scheme, in
particular the discretization in space and time, the ALE approach, the linearization and the elastic
mesh update, are discussed. The numerical tests in Section 4 cover the stationary and non-stationary
behaviour of a bubble in equilibrium, a freely oscillating droplet, and a rising bubble in a liquid.
They demonstrate the high accuracy of the proposed method.

2. MATHEMATICAL MODEL

2.1. Governing equations for two-phase flows

We consider a typical situation of a two-phase flow. Let �⊂R3 be a cylindrical domain. We assume
that � contains two immiscible liquids, in particular a liquid droplet �1(t) completely surrounded
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AN ACCURATE FINITE ELEMENT SCHEME FOR INTERFACE FLOWS 121

by another liquid filling the domain �2(t)=�\�1(t), where t ∈[0,T ] is the time variable. The
interface between the two immiscible liquids is denoted by �F (t) :=��1(t)∩��2(t). We denote
by �k , �k the density and dynamic viscosity of the fluid in �k(t), k=1,2.

The fluid flow in � is described by the time-dependent incompressible Navier–Stokes equations
completed by the initial conditions, the kinematic and force balance at the interface �F (t) and
boundary conditions at ��. For simplicity, we consider homogeneous Dirichlet boundary conditions
at ��; however, the approach can be extended to other types of boundary conditions too, see,
e.g. [19]. We choose the characteristic values U , L , �1 for velocity, length, density and define the
dimensionless density and Reynolds number in different parts of the domain � to be

�(x)=
{
1 for x in �1(t),

�2/�1 for x in �2(t),
Re(x)=

{
�1UL/�1 for x in �1(t)

�1UL/�2 for x in �2(t)

Then, the Navier–Stokes equations describing the two-phase flow can be expressed in a dimen-
sionless form as

�(x)
(

�u
�t

+(u·∇)u
)

−∇ ·(Sk(u, p)) = �(x)
1

Fr
e in �k(t)×(0,T]

∇ ·u = 0 in �k(t)×(0,T]
[u]=0, si,F [S(u, p)]·m = 0 on �F (t)×(0,T]

m[S(u, p)]·m=− 1

We
K, u·m = w ·m on �F (t)×(0,T]

u = 0 on ��×(0,T]
u = 0 on �k×{0}

(1)

for k=1,2, i=1,2, where u denotes the fluid velocity, w the interface velocity, p the pressure in
the fluid, K the sum of the principal curvatures, ∇ and ∇· the gradient and divergence operators,
respectively. Further, the notation [·] is used for the jump across the interface, e for the unit vector
opposite to the gravitational force, m for the outward unit normal vector with respect to �1(t) and
si,F , i=1,2, for tangential vectors on the interface �F (t). For a Newtonian incompressible fluid,
the dimensionless form of the stress tensor Sk(u, p) and the velocity deformation tensor D(u) are
given by

Sk(u, p) := 2

Re(x)
D(u)− pI, D(u)= 1

2
(∇u+∇uT ) (2)

where I is the identity tensor and the superscript T denotes the transpose of the tensor. Finally, the
dimensionless Weber and Froude number are given by

We= �1U
2L

�
, Fr= U 2

Lg

with the gravitational constant g and the surface tension coefficient �.
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122 S. GANESAN AND L. TOBISKA

Remark 1
When choosing the characteristic velocity as U =√

Lg, the Weber number becomes the so-called
Eötvös number

Eo= �1gL
2

�

and the Froude number reduces to 1.

2.2. Variational formulation

Starting point of a finite element discretization is a weak formulation of (1). To this end let
V :=(H1

0 (�))3 and Q := L2
0(�) be the usual Sobolev spaces. We multiply the momentum and mass

balance equations of (1) by test functions v∈V and q∈Q, respectively, integrate over �, and use
the integration by parts in each subdomain �k(t). After incorporating the boundary conditions, the
variational form of (1) reads as given below:

For given �(0) and u(0,x), find (u, p)∈V ×Q such that

(
�(x)

�u
�t

,v
)

+a(u,u,v)−b(p,v)+b(q,u)=( f,v) ∀(v,q)∈V ×Q (3)

Here, (·, ·) denotes the inner product in L2(�) and its vector-valued versions and

a(û,u,v) = 2
∫

�

1

Re(x)
D(u) :D(v)dx+

∫
�

�(x)(û·∇)u·vdx

b(q,v) =
∫

�
q ∇ ·vdx

( f,v) = 1

Fr

∫
�

�(x)e ·vdx− 1

We

∫
�F (t)

Km·vd�F

To evaluate the above interface integral, we first replace the curvature term by the Laplace–Beltrami
operator, then use the integration by parts formula on the surface �F (t) to obtain

1

We

∫
�F (t)

Km·vd�F = 1

We

∫
�F (t)

�id�F ·vd�F =− 1

We

∫
�F (t)

∇id�F :∇vd�F

Here, the restriction id�F (t) :�F (t)→�F (t) denotes the identity mapping on �F (t). Since we
consider only closed interfaces, no additional integrals over the boundary of the interface appear,
see [11] for a more general case.

Remark 2
In case that a fluid in �1(t) is surrounded by air, the air flow in �2(t) is often neglected and
replaced by the assumption of a constant pressure field (�2	1). Thus, u(t)=0, p=const in �2(t)
and the integrals over � in (3) reduce to integrals over �1(t). We end up with a free surface flow
problem by considering the fluid phase in �1(t) only.
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2.3. 3D-axisymmetric variational formulation

In contrast to the standard approach of starting with the differential equations in cylindrical
coordinates and looking for a suitable variational formulation, we will derive the 3D-axisymmetric
weak form in the 2D-meridian domain � of � directly from the weak form (3) in 3D-Cartesian
coordinates. For this, we transform the volume and surface integrals in 3D into area and line
integrals in 2D by introducing cylindrical coordinates and imposing irrotational, axisymmetric
conditions. In such a way the space-dimension of the problem is reduced by one. This approach
leads naturally to boundary conditions along the ‘artificial rotational axis’ which are already partly
included in the weak form.

Let us define the Cartesian coordinates in terms of cylindrical polar coordinates r (the radial
coordinate), � (the azimuthal coordinate) and z (the axial coordinate) by

x=r cos�, y=r sin�, z= z

where r is the radial distance from the origin, and � is the counter-clockwise angle from the
x-axis. In terms of x and y, we have

r(x, y)=
√
x2+ y2, �(x, y)=arctan(y/x), 0��(x, y)<2�

Let u=(u1,u2,u3) be the velocity vector in Cartesian coordinates and uc=(ur ,u�,uz) be the
velocity vector in cylindrical coordinates. We define the Cartesian velocity components in terms
of the cylindrical velocity components by

u1=ur cos�−u� sin�, u2=ur sin�+u� cos�, u3=uz

Now, we use the fact that the cylindrical velocity components ur , u�, uz and the pressure p̃=
p̃(r,�, z) are independent of �, and u� =0. Hence, we have

u1(x, y, z) = ur (r(x, y), z)cos�(x, y), u2(x, y, z)=ur (r(x, y), z)sin�(x, y)

u3(x, y, z) = uz(r(x, y), z), p(x, y, z)= p̃(r(x, y), z)
(4)

Similarly, for the test functions v=(v1,v2,v3) and q we have

v1(x, y, z) = vr (r(x, y), z)cos�(x, y), v2(x, y, z)=vr (r(x, y), z)sin�(x, y)

v3(x, y, z) = vz(r(x, y), z), q(x, y, z)= q̃(r(x, y), z)
(5)

To illustrate our approach, let us consider the bilinear forms

(�u,v) =
∫ ∫ ∫

�
�(x, y, z)u·vdx dy dz (6)

(p,∇ ·v) =
∫ ∫ ∫

�
p ∇ ·vdx dy dz (7)

with �⊂R3 and transform them into the axisymmetric bilinear forms. Consider first the integral (6),
which arises from the discretization of the time derivative in (3). Using (4) and (5) we obtain the
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124 S. GANESAN AND L. TOBISKA

3D-axisymmetric form of (6) as

∫ ∫ ∫
�

�(x, y, z)u·vdx dy dz =
∫ 2�

0

∫ ∫
�

�(urvr cos
2�+urvr sin

2�+uzvz)r dr dz d�

= 2�
∫ ∫

�
�(urvr +uzvz)r dr dz

where � is the meridian of �. Next, integral (7) becomes

∫ ∫ ∫
�
p ∇ ·vdx dy dz =

∫ 2�

0

∫ ∫
�

[
p̃

(
�vr

�r
+ 1

r
vr + �vz

�z

)]
r dr dz d�

= 2�
∫ ∫

�

[
p̃

(
�vr

�r
+ 1

r
vr + �vz

�z

)]
r dr dz

Similarly, the 3D-axisymmetric form of the deformation tensor and convective integrals becomes

∫ ∫ ∫
�

1

Re(x, y, z)
D(u) :D(v)dx dy dz

=2�
∫ ∫

�

1

Re

[
�ur
�r

�vr

�r
+ urvr

r2
+ 1

2

(
�ur
�z

+ �uz
�r

)(
�vr

�z
+ �vz

�r

)
+ �uz

�z
�vz

�z

]
r dr dz

∫ ∫ ∫
�

�(û·∇u) ·vdx dy dz

=2�
∫ ∫

�
�

[(
ûr

�ur
�r

+ ûz
�ur
�z

)
vr +

(
ûr

�uz
�r

+ ûz
�uz
�z

)
vz

]
r dr dz

The surface integral over �F (t) can be transformed into a line integral over the surface generating
curve L⊂�� as follows:

1

We

∫
�F (t)

∇id�F :∇vd�F = 2�

We

∫
L

(
� idr
�l

�vr

�l
+ idrvr

r2
+ � idz

�l
�vz

�l

)
r dl

where �/�l denotes the tangential derivative and id=(idr , idz)=(r, z) is the identity.
Note that the integrals of the transformed linear, bilinear and trilinear form, respectively, are

well defined provided that

p,q∈L2
r (�) :=

{
w :

∫
�
rw2 dr dz<∞

}
, ur ,vr ∈H1

r (�) :=
{
w :w,

�w

�r
,
�w

�z
∈L2

r (�)

}

and, additionally, r−1/2ur ,r−1/2vr ∈L2(�). The last requirement leads to the boundary condition
ur =0 along the symmetry axis r =0. The boundary part of �� along r =0 can be considered as
an artificial boundary since it is not a boundary of ��. We mention that along r =0 there is another
boundary condition ‘hidden’, which becomes visible when assuming regularity and integrating by
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AN ACCURATE FINITE ELEMENT SCHEME FOR INTERFACE FLOWS 125

parts to generate the strong formulation of the underlying system of differential equations. This
‘hidden’ boundary condition can be written as

�uz
�r

∣∣∣∣
r=0

=0 (8)

The Dirichlet-type boundary condition ur =vr =0 on r =0 is taken into account by imposing
it into ansatz and test spaces. This leads to different spaces for the two component (ur ,uz) of
the velocity. For more details on existence and uniqueness (for small data) in weighted Sobolev
spaces, we refer to [20, 21]. It should be mentioned that the 3D-axisymmetric form is—modulo
some additional terms—similar to the 2D plane formulation. This offers the possibility to extent
2D finite element codes for 3D-axisymmetric problems quite easily.

3. NUMERICAL SCHEME

3.1. ALE approach

In our case the subdomains �1(t) and �2(t) representing the two phases are time dependent but not
�=�1(t)∪�F (t)∪�2(t). In order to simplify the notation in the following, we write �(t) instead
of � having in mind that � decomposes into time-dependent subdomains. As we mentioned in the
Introduction, we use the ALE approach to track moving boundaries and interfaces. To rewrite the
weak form (3) in the ALE form, we define a family of mappings At , which at each time t ∈[0,T)

map a point (the ALE coordinate) Y∈ �̂ of the reference domain �̂ onto a point (the Eulerian
coordinate) X of the current domain �(t), i.e.

At : �̂→�(t), At (Y)=X(Y, t)

We assume that the mapping At is homeomorphic, i.e. At ∈C0(�̂) is invertible with continuous
inverse A−1

t ∈C0(�(t)). Further, we assume that the mapping

t→X(Y, t), Y∈ �̂

is differentiable almost everywhere in [0,T ). The vector function u in (3) is defined on the Eulerian
frame. Now, we define û : �̂×(0,T)→R3 by

û(Y, t)=u(At (Y), t) ∀Y∈ �̂

which is the corresponding function on the ALE frame. Further, the time derivative of u on the
ALE frame is defined by

�u
�t

∣∣∣
�̂
(X, t)= �û

�t
(A−1

t (X), t)

Here, the notation |�̂ is used to indicate that the time derivative is taken on the ALE frame. Then,
the term

w(X, t)= �X
�t

∣∣∣∣
�̂
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126 S. GANESAN AND L. TOBISKA

represents the domain velocity. Now, applying the chain rule with respect to the time derivative
on u◦At on the ALE frame, we obtain

�u
�t

∣∣∣∣
�̂

= �u
�t

∣∣∣∣
X

+ �X
�t

∣∣∣∣
�̂

·∇Xu= �u
�t

∣∣∣∣
X

+w ·∇Xu (9)

where ∇X denotes the gradient with respect to the Eulerian coordinate and the time derivative on
the Eulerian frame is denoted by |X. Using (9) in (3), we obtain(

�(x)
�u
�t

∣∣∣
�̂
,v

)
+a(u−w;u,v)−b(p,v)+b(q,u)=( f,v) (10)

which is the ALE form of Equation (3). Formulation (10) implies the Eulerian form and the
Lagrangian form for choosing w=0 and w = u, respectively. From a theoretical point of view,
the choice of the reference domain is arbitrary, and often the initial domain �(0) is taken as the
reference domain. However, in case of large deformations of the domain �(t), it is better to choose
a domain �(t∗)≈�(t) with t∗<t as the reference domain to preserve the mesh quality. In our
computations, we always use �(tn) as the reference domain in the ALE approach, i.e. the domain
of the previous time step t∗ = tn .

3.2. Discretization and linearization

We use the second-order, strongly A-stable fractional-step-ϑ scheme [22, 23] as a time discretiza-
tion. Further, the non-linear convection term is linearized by a fixed point iteration. Starting with
the solution of the previous time step u0 :=uold, we iterate uk �−→uk+1 based on∫

�(t)
(unew ·∇)unewvdx≈

∫
�(t)

(uk ·∇)uk+1vdx (11)

until the residual measured in the Euclidean norm is below a given threshold or the given maximal
number of iterations is reached. Then, we set unew :=ukstop .

As in [24], we use a semi-implicit discretization of the curvature term

− 1

We

∫
�F (tn+1)

∇id�F (tn+1) :∇vd�F ≈− 1

We

∫
�F (tn)

∇(id�F (tn)+�tnun+1) :∇vd�F

with the time step �tn = tn+1− tn . Thus, the curvature term is splitted into an explicit term on the
right-hand side of the equation

− 1

We

∫
�F (tn)

∇id�F (tn) :∇vd�F

and an implicit term on the left-hand side of the equation

+�tn
We

∫
�F (tn)

∇un+1 :∇vd�F

Note that this term on the left-hand side is symmetric and positive semi-definite and—compared
with a fully explicit approach—adds stability to the system.

Since in the ALE approach the computed velocities are used to move the free surface and inter-
face, high accuracy is required. Moreover, mass conservation should be guaranteed and spurious
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velocities—if there are some—should be suppressed. Our focus is on second-order inf–sup stable
finite element approximations avoiding spurious pressure oscillations [25]. A popular inf–sup
stable second-order element is the Taylor–Hood element, consisting of continuous, piecewise
quadratic and continuous, piecewise linear functions on triangles (P2/P1) or continuous, piecewise
biquadratic and continuous, piecewise bilinear functions on quadrilateral (Q2/Q1). Unfortunately,
for this type of finite elements the pressure is approximated by continuous functions, which generate
spurious velocities in the neighbourhood of the interface [14]. For suppressing spurious velocities
one would be more interested to use discontinuous, piecewise linear functions for the pressure
approximation combined with continuous, piecewise quadratic approximations for the velocity
components (P2/Pdisc

1 ). However, this finite element pair is not inf–sup stable on a general regular
family of meshes [26, 27]. Indeed, in [28] (2D case) and recently in [29] (3D case), the inf–sup
stability has been shown only for a restricted class of macro-element-type meshes satisfying certain
properties. It seems to be very difficult to maintain these properties on a sequence of moving
meshes. Therefore, we enrich the velocity space by adding cubic bubble functions to combine the
properties of suppressing spurious velocities (discontinuous pressure approximations) and inf–sup
stability on a general shape regular family of meshes [30]. We denote this element pair shortly
by Pbubble

2 /Pdisc
1 . Alternatively, on quadrilaterals we can use continuous, piecewise biquadratic

functions to approximate the velocity components and discontinuous, piecewise linear functions
for the pressure, i.e. Q2/Pdisc

1 [25, 31]. Note that the reason for a better mass conservation of
discontinuous, piecewise polynomial pressure approximations is the elementwise vanishing of the
first integral moments of the divergence of the velocity field.

3.3. Mesh generation and mesh moving technique

The domain is triangulated by an interface/boundary-resolved triangular mesh using the mesh
generator ‘triangle’ [32]. We also use decompositions of the domain into quadrilaterals starting
with a coarse mesh which is successively refined by connecting the midpoints of opposite sides.

Our mesh moving technique consists of two steps. First, we advect the free surface/interface
points with the computed flow velocity, and then displace the inner points in an elastic solid manner
according to the displacement of the free surface/interface points.

We advect the free surface/interface points Xn solving

dX
dt

=u(X, t)

with the implicit Euler scheme

Xn+1=Xn+(tn+1− tn)un+1

to obtain the new position of the free surface/interface points. Then, we compute from the free
surface/interface displacement dn =Xn+1−Xn the displacement �n of the inner points by solving
the linear elasticity problems:

∇ ·T(�n)=0 in �k(tn), �n(xn)=dn on ��k(tn), k=1,2

where T denotes the stress tensor given by

T(�)=�1(∇ ·�)I+2�2D(�)
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128 S. GANESAN AND L. TOBISKA

The problem is discretized by continuous, piecewise linear finite elements on the same mesh,
which is used for the flow computation. Here, �1 and �2 are the Lame constants, chosen to be
�1=�2=1 in our numerical tests. Further, the mesh velocity becomes

wn =�n/(tn+1− tn)

By using the ALE approach with this elastic mesh update we avoided a quick distortion of the mesh.
Further, neither re-meshing nor interpolation is needed at every time step. However, occasionally
the distortion of the mesh becomes very large and at that time the re-meshing is unavoidable. Thus,
we implemented an automatic re-meshing procedure in the code MooNMD [33] which will be
called automatically if the mesh quality criterion is not fulfilled. While re-meshing, we generate
first a new mesh by using the old free surface/interface points and then interpolate the solutions
from the old to the newly generated mesh.

3.4. Solution of the saddle point problem

For solving saddle point problems fast geometric multi-grid methods on fixed grids are available
in the code MooNMD [17, 33, 34]. These iterative solvers are based on a hierarchy of mesh levels,
which is quite expensive (especially due to re-meshing) to generate on a sequence of moving
meshes. Therefore, we solved the linearized system directly using the direct solver ‘UMFPACK’
[35–38].

4. NUMERICAL RESULTS

We consider different test examples to demonstrate the accuracy of the proposed numerical scheme.
First, we study a 3D-axisymmetric bubble in equilibrium under zero gravity condition. In this
case, no flow field is generated, i.e. u=0 and the pressure is piecewise constant in the domains
�k(t)=�k for t�0 and has a jump across the interface �F (t)=�F . We solve this stationary
Stokes problem with given interface �F numerically with different finite element discretizations
to obtain an impression on the size of spurious velocities. Next, we relax the assumption of a
given fixed interface, consider the problem as time-dependent and determine the dynamics of the
interface by numerically solving the time-dependent Navier–Stokes equation. A reliable method
should again not generate a flow field and simulate a bubble in equilibrium. The kinetic energy
caused by spurious velocities and the mass fluctuation will be studied numerically over time for
different finite element discretizations. As a second test case, we consider a 3D-axisymmetric
freely oscillating droplet and compare the computational results with analytical approximations
and fully 3D computations. Finally, the computation of a rising 3D-axisymmetric bubble problem
will show that the proposed method is also applicable for large density jumps.

4.1. Static bubble for a given interface

We consider a 3D-axisymmetric bubble in equilibrium under zero gravity condition. In this case,
the stationary Stokes problem without the kinematic boundary condition

u·m=w ·m on �F

is solved. We expect that no flow field will be generated, in particular, that the velocity at the
interface will be zero. Let [0,2]×[0,4] be the meridian domain � and the half circle of radius 1
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Figure 1. The meridian domain �=�1∪�2 (left) of the 3D-axisymmetric static bubble problem and its
triangulation (right) at level 0. �z denotes the artificial boundary on the rotational axis.

Figure 2. Spurious velocities generated in the axisymmetric static bubble problem with Q2/Q1 discretiza-
tion at refinement level 2 (left) and 3 (right).

with centre at (0,1) represents the bubble. We triangulate the meridian domain � using interface-
resolved quadrilateral meshes. The computational grid is obtained by successively refining an initial
coarse grid, see Figure 1 (right) for the grid level 0. For studying the influence of continuous versus
discontinuous pressure approximations, two different inf–sup stable discretizations, namely Q2/Q1
and Q2/Pdisc

1 , have been used. The dynamic viscosities and the surface tension have been set to
be �1=�2=1Ns/m2 and �=1N/m, respectively. For the continuous pressure approximation Q1,
the generated spurious velocities are visualized in Figure 2 on the refinement levels 2 and 3. The
arrows indicate the direction and the magnitude of the spurious velocities at the corresponding
points. The colours correspond to the magnitude of the axial velocity component uz . We clearly
see that the magnitude of spurious velocities becomes smaller when the mesh is refined. In the
case of the discountinuous pressure approximation Pdisc

1 , the spurious velocities are much smaller
and would be not visible in the same scale. Indeed, the velocity error ||u−uh ||=||uh || (since
u=0) measured in L2-norm and H1-semi norm is about three order of magnitude smaller for
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Figure 3. Velocity error in L2-norm (left) and order of convergence (right) for the static bubble
problem. Var 1: Q2/Q1 and Var 2: Q2/Pdisc
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Figure 4. Velocity error in H1-semi norm (left) and order of convergence (right) for the static bubble
problem. Var 1: Q2/Q1 and Var 2: Q2/Pdisc

1 .

the discontinuous pressure approximation than for the continuous ones. Figures 3 and 4 show, in
addition, the rates of convergence order for the two discretizations.

4.2. Static bubble for an unknown interface

In contrast to the previous section we now consider the time-dependent case and apply the kinematic
boundary condition. We start with the same initial configuration and expect no movement of the
bubble since it is in equilibrium. However, due to the presence of spurious velocities the interface
will be moved by the ALE technique. The time-dependent Navier–Stokes equations are solved by
the Pbubble

2 /Pdisc
1 discretization on triangular interface-resolved meshes. Iso-parametric elements

and the Laplace–Beltrami technique have been used to achieve optimal convergence rates [14].
In this test case, we used the densities �1=1.23kg/m3, �2=1000kg/m3, the dynamic viscosities

�1=1.73×10−5Ns/m2,�2=1×10−3Ns/m2, and the surface tension �=0.073N/m. The chosen
characteristic length of L=d0=2×10−3m and the characteristic velocity U =0.14m/s result in
the Weber number We=0.537 and the Reynolds number Re=280 with respect to the outer phase.
The computations have been performed on two different meshes: a coarse grid with a minimal
and maximal diameter of the triangular cells of hmin=0.0157 and hmax=0.158, and a fine grid
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Figure 5. Kinetic energy (left) and mass fluctuation (right) over time in the static bubble problem due to
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Figure 6. Shrinking of the bubble for the P2/P1 discretization on the fine mesh. Bubble shapes at
dimensionless times t=0.01, 0.03, 0.06, 0.07 (from left to right).

with hmin=0.00785 and hmax=0.0969. The effect of spurious velocities can be demonstrated by
calculating the (dimensionless) kinetic energy of the bubble

E=
∫

�1

ru(t) ·u(t)dr dz (12)

Another important quantity for evaluating the accuracy of a numerical scheme is the mass fluctuation
factor

MF (t)= |�1(0)−�1(t)|
|�1(0)| ×100% (13)

where |�1(t)| denotes the volume of the bubble �1(t) at time t .
The kinetic energy (due to the spurious velocities) and the mass fluctuation in this test case are

plotted in Figure 5. In variant 1 (P2/P1, coarse mesh) the dimensionless kinetic energy increases
to a maximal value of about 17×10−3 and reduces to zero eventually when the mass of the bubble
reduces to zero. This effect is less visible in variant 3 (P2/P1, fine mesh). An interesting observation
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in this computation is that spurious velocities are almost suppressed in the discontinuous pressure
approximation. Indeed, the magnitudes of spurious velocities are numerically zero over a large
time interval which is not the case for continuous pressure approximations. Further, as noticed at
the end of Section 3.2, the discontinuous pressure approximation shows a better mass conservation,
see Figure 5 (right). However, for the continuous pressure approximation, the mass loss in the
bubble is quite large and the bubble starts to shrink in variants 1 and 3, see Figure 6.

4.3. Freely oscillating droplet

In this section we present numerical results for a freely oscillating 3D-axisymmetric droplet. The
fluid is assumed to be in rest at time t=0 in a zero gravity environment. At the beginning,
the shape of the bubble will be different from its equilibrium shape and will converge to the
equilibrium for t→∞. This is an example of a surface tension driven one-phase flow (cf. Remark
2 in Section 2.2).

4.3.1. Comparison with a fully 3D simulation. In [15], fully 3D simulations for a droplet of the
initial shape

x2+ y2+(z/a)2=1, a=1.2

has been performed for Re=300 andWe=1. We consider the same problem but in an axisymmetric
formulation. The trajectory of the top tip point on the z-axis computed by the 3D-axisymmetric
simulation is plotted in Figure 7 (left) and is in good agreement with the trajectory obtained in [15].
The mass fluctuation in our simulation for a grid with hmin=0.02, hmax=0.11, and 15 562 degrees
of freedom is plotted in Figure 7 (right). After 6 periods the mass fluctuation is about 0.014%
for 15 562 degrees of freedom, which is an excellent value showing the accuracy of the numerical
scheme. The flow field in the droplet during oscillations is visualized in Figure 8. The colours in
each image of Figure 8 represent the magnitude of the pressure field in the droplet, where blue
and red indicate minimal and maximal values, respectively.

Further, we compare the frequency 	num after n period, and the damping factor � given as

	num := n

tn
and � := n

√
Trmax(tn)−r(t∞)

Trmax(t0)−r(t∞)
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Figure 7. Trajectory of the top tip on the z-axis (left) and mass fluctuation (right) in a freely oscillating
droplet computation with Re=300, We=1.
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Figure 8. A sequence of shapes and flow fields at different instances of a freely oscillating droplet, dimen-
sionless timings from image 1 are t=0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0. Colours represent the magnitude

of the pressure field in the droplet.

with the values computed in [15]. Here, tn is the time at the nth period, Trmax(t) is the trajectory
of the tip which has its largest radius at time t= t0 and r(t∞) is the radius of the spherical droplet
with the same volume as the initial droplet. The frequency and the damping factor obtained in
our computation are 	num=0.403 and �=0.966. Although a rather coarse 2D mesh has been
used to calculate these values, the results are in good agreement with the values 0.406 and 0.966,
respectively, obtained in [15] by a fully 3D simulation at refinement level 12.

4.3.2. Comparisons with analytical approximations. The oscillating frequency 	the of a freely
oscillating inviscid, incompressible droplet can be approximated by a linear stability analysis. For
the 3D case and for small initial perturbations of the equilibrium given by

r(�)=r0(1+
Sk(�)), 
	1

the following formula for the frequency has been obtained in [39, 40]:

	2
the=

k(k−1)(k+2)�

�r0
(14)

Here, R is the distance from the centre of the droplet to the free surface, k denotes the order of the
spherical harmonic Sk(�), � is the density, � the surface tension, and 
 is a small positive constant.
Furthermore, it is mentioned in [40] that a water droplet of initial radius less than the critical
value Rc=2.3×10−8m is damped aperiodically. To compare our numerical results with these
theoretical predictions, we consider a water droplet with three different radii: (i) r0=2.3×10−9 m,
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Figure 9. Trajectories of the top tip on the z-axis in three variants of a freely oscillating
droplet over the dimensionless time.

Table I. Comparisons of theoretical and numerical frequencies, and
damping factor in three variants for a freely oscillating droplet.

Variant 	the 	num � MFmax

(ii) 121.1434 119.0527 0.9663 0.005
(iii) 10.8353 10.5129 0.9653 0.001

which is less than the critical value, (ii) r0=1×10−3m, (iii) r0=5×10−3m. The used material
parameters of the water droplet are the surface tension �=0.074N/m, the density �=1000kg/m3

and the dynamic viscosity �=0.001Ns/m2. These parameters together with L=r0 lead to the set
of dimensionless parameters:

(i) Re=2.3, We=31 (where U =103m/s),
(ii) Re=1000, We=13.5 (where U =1m/s),
(iii) Re=5000, We=67.5 (where U =1m/s).

Computations are made for these three cases, the mode k=2 and 
=0.3. The trajectories of the
top tip point are shown in Figure 9. As predicted in the theoretical analysis [40], for the variant
(i) the droplet damped aperiodically in our computations, see Figure 9. Furthermore, the oscillating
frequency is much higher in variant (ii) compared with variant (iii). The numerically computed
frequencies for the variants (ii) and (iii) are compared with the theoretical frequencies predicted
by linear stability analysis, see Table I. This table also shows the damping factors and the mass
fluctuation.

4.4. Rising bubble

For illustrating the robustness of the proposed numerical scheme we compute a rising air bubble
in water where large jumps in the material properties have to be handled. In the computations,
�1 and �2 denote the air and water region, respectively. The following material parameters
have been used; the densities �1=1.23kg/m3, �2=1000kg/m3, the dynamic viscosities �1=
1.73×10−5Ns/m2, �2=1×10−3Ns/m2, the surface tension �=0.073N/m, and the gravitational
constant g=9.8m/s2. We assume that at time t=0, the bubble is of spherical shape with diameter
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d0=2.5×10−3m and is in rest. The diameter and the height of the cylindrical vessel containing
the bubble are 5×10−3 and 1×10−1m, respectively. We use the characteristic values L=2d0 and
U =√

Lg, which result in the dimensionless numbers Re=1107 and Eo=3.36 with respect to
the outer phase. After scaling the space variables we obtain the computational meridian domain
�1=(0, 0.5)×(0 2), which contains �2 of dimensionless radius r0=0.25 and centre (0, 0.5).

In our computation, we calculate a few quantities such as the sphericity, the rise velocity, and
the z component of the centre of mass. The sphericity of the bubble is defined by

S�1(t)=
Ae

A
= surface area of volume-equivalent sphere

surface area of the bubble

This implies that for a spherical bubble we obtain S�1(t)=1 and for any deformed bubble we
obtain S�2(t)<1. In the 3D-axisymmetric configuration, the surface area of a volume-equivalent
sphere and the surface area of the bubble are calculated by

Ae=4�

(
3

4�

∫ ∫
�1

r dr dz

)2/3

, A=2�
∫
L
r dl

where L⊂��1 denotes the bubble surface generating curve. The rise velocity (uz component) of
the bubble can be calculated by

Urise= 2�U

|�1|
∫ ∫

�1

uzr dr dz

where |�1| denotes the volume of the bubble. If the rise velocity reaches for t→∞ a stationary
value, then this value is called a terminal velocity. The z component of the centre of mass is
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Figure 10. Shape (left) and the sphericity (right) of the bubble at different times.
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Figure 11. Rise velocity (left) and centre of mass (right) of the bubble over time.

computed using

Zc= 2�L

|�1|
∫ ∫

�1

zr dr dz

The computed shapes and the sphericity of the bubble are shown in Figure 10. It can clearly be
seen that the spherical bubble changes its form to an elliptic shape during the transition. Further,
the computed rise velocities and the positions of the centre of mass are shown in Figure 11. After
1 s, the rise velocity reaches a stationary value.

For the considered set of data, it has been observed in experiments (see Figure 7.3 in [41])
that the shape of the bubble belongs to the ellipsoidal regime. Further, the terminal velocity of
3×10−1m (approximately) has been reported. The computed shape and the terminal velocity are
in good agreement with these experimental observations.

5. CONCLUDING REMARKS

A finite element scheme for computing free surface and interface flows has been presented in
this paper. The highlights of the numerical algorithm are the 3D-axisymmetric derivation from the
variational form, the Laplace–Beltrami operator technique for curvature approximation, the ALE
approach with moving meshes to track the free surface/interface and capable of computing almost
spurious velocity free solutions. Even on problems with large jumps in material parameters the
proposed numerical scheme works well without loss of accuracy.

An array of numerical computations is made for a static and freely oscillating 3D-axisymmetric
droplet using this numerical scheme. The computed quantities are both qualitatively and quan-
titatively in good agreement with fully 3D simulations and with analytical approximations.
The robustness with respect to jumps in the material parameter is visible in the rising bubble
test problem. These studies demonstrate the validity and the accuracy of the proposed numerical
scheme.
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